US 9,438,419 Bl

1
PROBABILISTIC PASSWORD CRACKING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of and claims
priority to U.S. Nonprovisional patent application Ser. No.
13/624,249, entitled “Password Cracking Through Learning
Probabilistic CFGs”, filed on Sep. 21, 2012, which is a
continuation of and claims priority to U.S. Nonprovisional
patent application Ser. No. 13/547,779, entitled “Password
Cracking Through Learning Probabilistic CFGs”, filed on
Jul. 12, 2012, which claims priority to U.S. Provisional
Application No. 61/506,785, entitled “Password Cracking
Through Learning Probabilistic CFGs”, filed on Jul. 12,
2011.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

This invention was made with Government support under
Grant No. 2006-DN-BX-K007 awarded by the U.S.
National Institute of Justice. The government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates, generally, to cryptography. More
particularly, it relates to a system and method of probabi-
listic password cracking.

2. Brief Description of the Prior Art

Human memorable passwords provide the basis for much
of today’s encryption and authentication protocols. This is
due to numerous features that passwords possess, such as the
lack of additional hardware requirements (e.g., scanners or
public/private key tokens), user acceptance, and the ease
with which passwords can be transformed into encryption
keys via hashing.

In the setting of cracking passwords in a forensic setting,
the attacker (e.g., law enforcement) has obtained the pass-
word hashes or encrypted files and is now attempting to
decrypt the files by figuring out the original passwords from
the hashes. A forensic, or offline password cracking attack
can be broken up into three distinct steps. First, the attacker
makes a guess as to the user’s password, for example
“password123”. Next, the attacker hashes that guess using
whatever hashing algorithm was used. In the case of file
encryption, the hashing algorithm is used to convert the
password guess into an encryption key. Thirdly, the attacker
compares the hash of the password guess to the hash the
attacker is trying to crack. If the two hashes match, the
password is considered broken. With file encryption, the
attacker attempts to decrypt the file (or file header) with the
key generated, and if the file is decrypted successtully, the
password is considered cracked. These three steps are
repeated over and over again with new guesses until the
attacker breaks the password, or runs out of time. However,
this process is very time-consuming (i.e., time that law
enforcement might not have) and inefficient in making
password guesses.

The two most commonly used methods to make password
guesses are brute-force and dictionary based attacks. With
brute-force, the attacker attempts to try all possible password
combinations. While this attack is guaranteed to recover the
password if the attacker manages to brute-force the entire

10

15

20

25

30

35

40

45

50

55

60

65

2

password space, exhaustive search of the password space is
often not feasible due to time and equipment constraints.
Several techniques have been developed to generate more
targeted search spaces, for example Markov models (L. R.
Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proceedings
of the IEEE, V. 77, No. 2 (February 1989)), and can be used
to generate search spaces according to heuristics about the
structure of likely passwords. This strategy has been indeed
adopted by popular password crackers such as JOHN THE
RIPPER™.

If no salting is used, brute-force attacks can be dramati-
cally improved through the use of pre-computation and
powerful time-memory trade-off techniques known as rain-
bow tables (N. Mentens, L. Batina, B. Preneel, 1. Verbau-
whede, “Time-Memory Trade-Off Attack on FPGA Plat-
forms: UNIX Password Cracking,” Proceedings of the
International Workshop on Reconfigurable Computing:
Architectures and Applications, Lecture Notes in Computer
Science, V. 3985, pg. 323-334, Springer (2006); M. Hell-
man, “A Cryptanalytic Time-Memory Trade-Off,” IEEE
Transactions on information Theory, V. 26, Issue 4, pg.
401-406 (1980); P. Oechslin, “Making a Faster Cryptana-
Iytic Time-Memory Trade-Off,” Proceedings of Advances in
Cryptology (CRYPTO 2003), Lecture Notes in Computer
Science, V. 2729, pg. 617-630, Springer (2003)). Some
Markov models may be de-randomized into a deterministic
index function, allowing them to be combined with time-
memory trade-off techniques, such as the construction of
optimized rainbow tables (A. Narayanan and V. Shmatikov,
“Fast Dictionary Attacks on Passwords Using Time-Space
Tradeoff,” CCS ’05 (Alexandria, Va. Nov. 7-11, 2005)).

The second main technique of making password guesses
is a dictionary attack. The dictionary itself may be a collec-
tion of word lists that are believed to be common sources
from which users choose mnemonic passwords. However,
users rarely select unmodified elements from such lists, for
instance because password creation policies prevent it, and
instead generally modify the words in such a way that they
can still recall them easily. In a dictionary attack, the attacker
tries to reproduce this approach to password choice by
processing words from an input dictionary and systemati-
cally producing variants through the application of pre-
selected mangling rules. For example, a word-mangling rule
that adds the number “9 at the end of a dictionary word
would create the guess “password9” from the dictionary
word “password.”

For a dictionary attack to be successful, it requires the
original word to be in the attacker’s input dictionary and for
the attacker to use the correct word-mangling rule. While
dictionary based attack is often faster than brute-force on
average, attackers are still limited by the amount of word-
mangling rules they can take advantage of due to time
constraints. Such constraints become more acute as the sizes
of the input dictionaries grow. In this case, it becomes
important to select rules that provide a high degree of
success while limiting the number of guesses required per
dictionary word.

Choosing the right word-mangling rules is crucial as the
application of each rule results in a large number of guesses.
This is especially true when the rules are used in combina-
tion. For example, adding a specific two-digit number to the
end of a dictionary word for a dictionary size of 800,000
words would result in 80,000,000 guesses. Creating a rule to
allow the first letter to be uppercase or lowercase would
double this figure. Furthermore, in a typical password
retrieval attempt, it is necessary to try many different man-



